Species Regional Summary
Dreissena polymorpha
Lake Erie ( GL-II )

Invasion History Vectors Impacts References

Invasion

Invasion Description

1st Records: between Point Pelee and Erieau/Ontario/Lake Erie (4-11/1986, Carlton 2008); offshore between Longpoint and Port Colborne/Ontario/Lake Erie (4-11/1986, Carlton 2008)

Geographic Extent

Ontario/Lake St. Clair, southern portion on the lake (1988, USGS Nonindigenous Aquatic species program 2012); Ruthven, Union Water Treatment Plant (4.8 km east of Kingsville)/Ontaro/Lake Erie (summer 1987, Carlton 2008); Kingsville/Ontario/Lake Erie (summer 1987, Carlton 2008, on commercial fishing boat); between Point Pelee and Erieau/Ontario/Lake Erie (4-11/1986, Carlton 2008); Monroe/MI/Lake Erie (1988, USGS Nonindigenous Aquatic Species Program 2008); OH/Sandusky Bay, Lake Erie (1988, Center for Aquatic Resource Studies 2008); Erie/PA/Lake Erie (1989, USGS Nonindigenous Aquatic Species Program 2012); Palmyra/NY/Erie Canal (1990, USGS Nonindigenous Aquatic Species Program 2008); offshore between Longpoint and Port Colborne/Ontario/Lake Erie (4-11/1986, Carlton 2008)

Vectors

Level Vector
Alternate Ballast Water

Regional Impacts

Economic ImpactIndustry
Fouling of natural gas wellheads by zebra mussels, off Ontario, in Lake Erie, caused maintenance problems by 1990 (Carlton 2008). Zebra Mussels caused extensive fouling of the Detroit Edison's Monroe, MI coal-fired power plant at the western end of Lake Erie. Mussels covered the intake surfaces, blocked the trash bars, and fouled the condenser tubes. The fouled parts of the plants were cleaned with high-pressure water at a cost of $25,000-35,000 for each cleaning. Service water lines for fire-protection systems were also fouled, and cleared with chlorination, but regular use is limited by environmental concerns (Kovalak et al. 1993).
 
Economic ImpactHealth
The city of Windsor, Ontario, spent between $CAN 400,000-450,000 on charcoal filtration of water from Lake St. Clair, to control taste and odor problems after the Zebra Mussel invasion (Colautti et al. 2006). A similar case of fouling in the intakes of the Monroe, MI public water-filtration plant reduced the supply of raw water by 20% by the summer of 1989. Several outages and water emergencies in the city of Monroe occurred. Mechanical cleaning and chlorination was required to clear the pipes and maintain water flow. Estimated costs for this episode of fouling were $US 300,000 (LePage 1993).
 
Ecological ImpactTrophic Cascade
Zebra Mussels have profoundly affected the food web and nutrient budget of Lake Erie. Because this lake is shallow, and is surrounded by cities and agricultural land, with high nutrient inputs, the addition of a large biomass of benthic suspension-feeders has had dramatic impacts. Dreissenid mussels remove an estimated 25% of the phytoplankton biomass per day, and excrete large quantities of nitrogen and phosphorus into the water column. The low nitrogen-to-phosporus ratio of the excreted nutrients favors the growth of nitrogen-fixing cyanobacteria, such as blooms formed by Microcystis spp. Conroy and Culver (2005) argue that the mussels slow the transfer of nutrients between trophic levels, decreasing the resilience of the system to disturbances.
 
Ecological ImpactHerbivory
Dreissenid mussels remove an estimated 25% of the phytoplankton biomass per day (Edwards et al., 2004, cited by Conroy and Culver 2005). In the western basin of Lake Erie, average chlorophyll a concentrations declined by 43% from 1988 to 1989, with the onset of the Zebra Mussel invasion (Leach 1993). Filtration by Zebra Mussels was selective- mussels ingested small, desirable flagellates, while rejecting large colonies of toxic Microcystis cyanobacteria in western Lake Erie water (Vanderploeg et al. 2001). Reduction in chlorophyl a and increased light penetration, since the onset of the dreissenid invasions, was also seen in the eastern basin of Lake Erie (North et al. 2012).
 
Ecological ImpactHabitat Change
After the invasion of Lake St. Clair, the abundance and diversity of macrobenthos increased. Water clarity increased, and macrophytes (Potamogeton sp., Vallisneria americana, and Elodea canadensis) and filamentous algae became abundant (Griffiths 1992). In the western basin of Lake Erie, Secchi disk depth (an estimate of transparency) increased by 85% from 1988 to 1989 (Leach 1993). Although the light conditions and substrate of the lakes rocky reefs had been greatly altered, no change was seen in the spawning of Walleye (Sander vitreum), an important commercial and sport fish (Leach 1993). The introduced amphipod Echinogammarus ischnus was strongly associated with dreissenid mussels, mostly D. polymorpha (Kang et al. 2007)
 
Ecological ImpactFood/Prey
Diving ducks of several species (mostly Greater and Lesser Scaup, Athya marila, A. affinis) appeared in large flocks in late fall and early spring at Point Pelee, Ontario in 1991-1992. Caging experiments indicated that they sharply reduced Zebra Mussel abundance, but these effects disappeared in a few months. Ice cover prevented predation in winter (Hamilton et al. 1994). Round Gobies (Neogobius melanostomus) in the Detroit River fed largely on Zebra Mussels. The size and numbers of mussels eaten were proportional to the length of the fish (Ray and Corkum 1997).
 
Ecological ImpactCompetition
In the western basin of Lake Erie, Presque Isle Bay, and Lake St. Clair, fouling by Zebra Mussels was reported to cause declines of 89-100% in native Unionid mussels (Schloesser et al. 1996; Ricciardi et al. 1998).
 
Ecological ImpactParasite/Predator Vector
Dreissena polymorpha was found to be an important host for trematode parasites, including the cosmopolitan Echinoparyphium recurvatum which can cause fatal infections in waterfowl (Karatayev et al. 2012).
 

References

Berkman, Paul Arthur, Haltuch, Melissa A., Tichich, Emily (1998) Zebra mussels invade Lake Erie muds, Nature 393: 28

Carlton, James T. (2008) The Zebra Mussel Dreissena polymorpha found in North America in 1986 and 1987, Journal of Great Lakes Research 34: 770-773

Colautti, Robert I.; Bailey,Sarah A. ; v an Overdijk, Colin D.A.; Amundsen, Keri MacIsaac, Hugh J. (2006) Characterised and projected costs of nonindigenous species in Canada., Biological Invasions 8: 45-69

Conroy, Joseph D.; Culver, David A. (2005) Do dreissenid mussels affect Lake Erie ecosystem stability process?, American Midland Naturalist 153: 20-32

Garton, David W., Berg, David J., Stoeckman, Ann M., Haag, Wendell R. (1993) Biology of recent invertebrates invading species in the Great Lakes: the spiny water flea, Bythotrephes cederstroemi, and the zebra mussel, Dreissena polymorpha., In: McKnight, Bill N.(Eds.) Biological Pollution: The Control and Impact of Invasive Exotic Species.. , Indianapolis. Pp. 63-85

Griffiths, Ronald W. (1992) Effects of zebra mussels (Dreissena polymorpha) on the benthic fauna of Lake St. Clair., In: Nalepa, Thomas F.//Schloesser, Donald W.(Eds.) Zebra Mussels: Biology, Impacts, and Control. , Boca Raton, FL. Pp. 415-437

Hamilton, Diana J.; Ankey, C. Davison; Bailey, Robert C. (1994) Predation of zebra mussels by diving ducks: An exclosure study, Ecology 15(2): 521-531

Kang, Misun; Ciborowski, Jan J.H.; Johnson, Lucinda B. (2007) The influence of anthropogenic disturbance and environmental suitability on the distribution of the nonindigenous amphipod, Echinogammarus ischnus, at Laurentian Great Lakes coastal margins., Journal of Great Lakes Research 33: 198-210

Karatayev, Alexander Y. and 5 authors (2012) Exotic molluscs in the Great Lakes host epizootically important trematodes, Journal of Shellfish Research 31: 885-894

Kovalak, William P.; Longton, Gary D.; Smithee, Richard D. (1993) Infestation of power plant water systems by the zebra mussel (Dreissena polymorpha Pallas)., In: Nalepa, Thomas F., and Schloesser, Donald W.(Eds.) Zebra Mussels: Biology, Impacts, and Control.. , Boca Raton, FL. Pp. 359-380

LePage, Wilfred Laurier (1993) Impacts of Dreissena polymorpha on waterworks operations at Monroe, Michigan: A case history., In: Nalepa, Thomas F., and Schloesser, Donald W.(Eds.) Zebra Mussels: Biology, Impacts, and Control.. , Boca Raton, FL. Pp. 333-358

Mackie, Gerald L. (1993) Biology of the zebra mussel (Dreissena polymorpha) and observations of mussel colonization on unionid bivalves in Lake St. Clair of the Great Lakes., In: Nalepa, Thomas F., and Schloesser, Donald W.(Eds.) Zebra Mussels: Biology, Impacts, and Control.. , Boca Raton, FL. Pp. 153-165

Mackie, Gerald L.; Schloesser, Don W. (1996) Comparative biology of zebra mussels in Europe and North America: An overview, American Zoologist 36: 244-258

Mills, Edward L.; Leach, Joseph H.; Carlton, James T.; Secor, Carol L. (1993) Exotic species in the Great Lakes: a history of biotic crises and anthropogenic introductions., Journal of Great Lakes Research 19(1): 1-54

Nichols, S. Jerrine; Wilcox, Douglas A. (1997) Burrowing saves Lake Erie clams, Nature 389: 921

North, Rebecca L. and 6 authors (2012) Distribution of seston and nutrient concentrations in the eastern basin of Lake Erie pre- and post-dreissenid mussel invasion, Journal of Great Lakes Research 38: 463-476

Schloesser, Don W.; Nalepa, Thomas F.; Mackie, Gerald L. (1996) Zebra mussel infestation of unionid bivalves (Unionidae) in North America, American Zoologist 36: 300-310

2003-2022 Nonindigenous Aquatic Species Database. Gainesville, FL. http://nas.er.usgs.gov



Vanderploeg, Henry A. and 6 authors (2001) Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie, Canadian Journal of Fisheries and Aquatic Science 58: 1208-1221

Wood; Megan A.; . LipciusI, Romuald N (2022) Non-native red alga Gracilaria vermiculophylla compensates for seagrass loss as blue crab nursery habitat in the emerging Chesapeake Bay ecosystem, PLOSOne 17(5): e0267880. h


  • Nemesis (current)
  • Marine Invasions Lab
  • Partner Portals
    Nemesis California Panama Galapagos Chesapeake JTMD
  • Summaries
    Select Species All Taxa Groups Regions
  • News
  • login

©