Species Regional Summary
Dreissena bugensis
Lake Erie ( GL-II )

Invasion History Vectors Impacts References

Invasion

Invasion Description

1st Record: Port Colborne/Ontario/Lake Erie (1989, USGS Nonindigenous Aquatic Species Program 2008)

Geographic Extent

Port Colborne/Ontario/Lake Erie (1989, USGS Nonindigenous Aquatic Species Program 2008); 2 miles south of Buffalo/NY/Lake Erie (1991, USGS Nonindigenous Aquatic Species Program 2008); MI/Lake St. Clair [Anchor Bay](2001, N 42 degrees 38.0", W 82 degrees 43.182", USGS Nonindigenous Aquatic Species Program 2008)

Vectors

Level Vector
Probable Ballast Water

Regional Impacts

Ecological ImpactHabitat Change
In transects off North Bass Island, the abundance of benthic invertebrates was much greater in and around dreissenid mussel colonies (dominated in biomass by D. bugensis, numerically by smaller D. polymorpha) compared with bare sediment. Among organisms strongly associated with mussels were amphipods (Gammarus fasciatus; Echinogammarus ischnus), copepods, ostracods, and Hydra sp. Dreissenid mussels provide shelter, structure for attachment, and also enrich the sediment with pseudofeces (Bially and MacIsaac 2000). Larvae of the mayfly Hexageneia spp., which burrow in soft sediments of the Great Lakes, in mesocosm experiments, showed a strong preference to settle near clusters of Dreissena (primarily D. bugensis) (Devanna et al. 2011).
 
Ecological ImpactHerbivory
In the western basin of Lake Erie, dreissenid mussels (predominantly D. bugensis) were estimated to graze 4-10% of edible non-diatom phytoplankton and 7-8% of diatoms per day, about comparable to that of zooplankton (6-11% and 7-8%). However, mussel grazing was largely confined to the benthic boundary layer, and was offset by their nitrogen and phosphorus excretion (Zhang et al. 2011). Reduction in chlorophyl a and increased light penetration, since the onset of the dreissenid invasions, was also seen in the eastern basin of Lake Erie (North et al. 2012).
 
Ecological ImpactCompetition
Replacement of Zebra Mussels (Dreissena polymorpha) by Quagga Mussles (D. bugensis) in deeper water of Lake Erie, off Dunkirk, NY was seen as early as 1994 (Mills et al. 1996). Replacement of Zebra Mussels by Quagga Mussels resulted in a decrease (up to 90%) of the number of dreissenids attached to native unionid mussels in Lakes Ontario, Erie, and St. Clair (Burlakova et al. 2014).
 
Ecological ImpactFood/Prey
In western Lake Erie, D. bugensis was the primary food of introduced adult Round Gobies (Neogobius melanostomus) (Campbell et al. 2009, cited by Kornis et al. 2012).
 
Ecological ImpactParasite/Predator Vector
Dreissena bugensis was found to be an important host for trematode parasites, inclduing the cosmopolitan Echinoparyphium recurvatum which can cause fatal infections in waterfowl (Karatayev et al. 2012).
 
Ecological ImpactCompetition
Quagga Mussels (Dreissena bugensis ) now domijnate phoisphoirus cycling in the lower Great Lakes.. 'The tissues and shells of quagga mussels now contain nearly as much phosphorus as the entire water columns of the impacted Great Lakes' (Li et al. 2021).
 

References

Full Reference List for Dreissena bugensis

  • Nemesis (current)
  • Marine Invasions Lab
  • Partner Portals
    Nemesis California Panama Galapagos Cocos Island NP JTMD
    Archived Projects
    Chesapeake
  • Browse Species
    Taxonomic Groups All Species
  • Browse Regions
    States
    Alaska
    Bioregions & Bays
  • News
  • login

Direct questions and comments to nemesis@si.edu.

©