Escharella hozawai

Overview

Scientific Name: Escharella hozawai

Phylum: Bryozoa

Class: Gymnolaemata

Order: Cheilostomatida

Family: Romancheinidae

Genus: Escharella

Species:

hozawai [Describe here as A. iricolor]

Native Distribution

Origin Realm:

Temperate Northern Pacific

Native Region:

Origin Location:

Temperate Northern Pacific [Japan] (Okada 1929, cited in Bock 2016) STATUS NOT STATED [Japan] Kawauchi, and Tozawa in Aomori Prefecture, Mutsu Bay. (Okada 1929 as Mucronella hozawai (synonymized taxon)) STATUS NOT STATED

Geographic Range:

[Western Pacific] Japan (Bock 2016)

General Diversity:

NF

Non-native Distribution

Invasion History:

No records of invasion (Global Invasive Species Database 2016)

Non-native Region:

Not applicable

Invasion Propens:

Not applicable

Status Date Non-native:

Not applicable

Vectors and Spread

Initial Vector:

NF

Second Vector:

NF

Vector Details:

NF

Spread Rate:

NF

Date First Observed in Japan:

Listed by Okada (1929) (Bock 2016)

Date First Observed on West coast North America:

NF

Impacts

Impact in Japan:

NF

Global Impact:

NF

Tolerences

Native Temperature Regime:

Mild temperate

Native Temperature Range:

Mutsu Bay: Between 4ºC in March and 24ºC in August at surface. (Ohtani & Terao 1973) Mild temperate (M. Otani, pers. comm.)

Non-native Temperature Regime:

Not applicable

Non-native Temperature Range:

Not applicable

Native Salinity Regime:

Euhaline

Native Salinity Range:

Mutsu Bay: varied between 31.5psu and 34.0psu annually at surface. (Ohtani & Terao 1973)

Non-native Salinity Regime:

Not applicable

Temperature Regime Survival:

See details

Temperature Range Survival:

RELATED: [Escharella spp.] -1.638 - 12.694ºC (OBIS 2016)

Temperature Regime Reproduction:

NF

Temperature Range Reproduction:

NF

Salinity Regime Survival:

See details

Salinity Range Survival:

RELATED: [Escharella spp.] 27.927 - 35.579 PPS (OBIS 2016)

Salintiy Regime Reproduction:

Polyhaline, Euhaline

Salinity Range Reproduction:

NF

Depth Regime:

Shallow subtidal

Depth Range:

Note: Judging from the record that attached to Zostera (see Okada 1929), it is presumed that E. H. was collected from the shallow waters. (Otani pers. comm.)

Non-native Salinity Range:

Native Abundance:

See detail

Reproduction

Fertilization Mode:

See details

Reproduction Mode:

Hermaphrodite/monoecious

Spawning Type:

NA

Development Mode:

Lecithotrophic planktonic larva (non-feeding)

Asexual Reproduction:

Budding/fragmentation (Splitting into unequal parts. Buds may form on the body of the “parent”)

Reproduction Details:

RELATED: [Escharella] Esharella species described as having embryos developing in ovicell (Ostrovsky 2013) [Gymnolaemates] Internal fertilization, whether intracoelomic or intraovarian, is obligatory (Temkin 1994 and 1996, cited in Ostrovsky 2013) [Gymnolaemates] Differ from most organisms in that sperm-egg fusion does not stimulate egg activation. Egg activation may not occur until "spawned" outside of maternal zooid (Temkin 1991) [Bryozoans] Non-brooding bryozoans feed during the larval stage, while the larvae of brooding bryozoans do not, since these larvae tend to settle soon after release (Hill 2001) [Bryozoans] While sperm is spawned through pores in lophophore tentacles, eggs are usually harbored inside the body wall, and are internally fertilized by sperm, coming in on lophophore feeding currents (Brusca and Brusca 2003, cited in Rouse 2011; Kozloff 1990, cited in Rouse 2011) [Bryozoans] Colonial hermaphrodites, with testes (spermatogenic tissue) and ovaries developing either within the same zooid (zooidal hermaphroditism) or in different zooids within the same colony (zooidal gonochorism) (Ostrovsky 2013) [Bryozoans] Members of the phylum Bryozoa are hermaphroditic. Both fertilization and egg brooding may either be internal or external (Ruppert et al. 2004) [Bryozoans] The first zooid in a colony is called the ancestrula. It is from this individual that the rest of the colony will grow asexually from the budding (Hill 2001) [Bryozoa] All bryozoan colonies are hermaphroditic. Autozooids may be dioecious; or monoecious, and protandrous or protogynous. (Hayward & Ryland 1999) [Bryozoa] Reproduces asexually by budding. (Mawatari 1976)

Adult Mobility:

Sessile

Adult Mobility Details:

RELATED: [Bryozoa] The abundance and taxonomic diversity of benthic bryozoan faunas are directly related to substratum. (Hayward & Ryland 1999) [Bryozoa] Bryozoans are a phylum of sessile, colonial suspension feeders found throughout the world in both marine and freshwater environments. (Tilbrook 2012)

Maturity Size:

NF

Maturity Age:

NF

Reproduction Lifespan:

NF

Longevity:

NF

Broods per Year:

NF

Reproduction Cues:

RELATED: [Bryozoans] Experiments often used light as a cue to collect embryos/larvae (Woollacott and Zimmer 1977) [Bryozoa] In coastal species light is an important stimulus to larval release, and many cheilostomates shed larvae during the first few hours of daylight. (Hayward & Ryland 1999) [Bryozoa] In various degrees of intensity according to the species temperature also stimulates sexual reproduction. (Winston 1977)

Reproduction Time:

NF

Fecundity:

NF

Egg Size:

RELATED: [Gymnolaemata] About 200µm (Woollacott and Zimmer 1977)

Egg Duration:

NF

Early Life Growth Rate:

RELATED: [Gymnolaemata] Two phases of larvae metamorphosis: first stage about 20mins; second stage 1-6 days (Woollacott and Zimmer 1977)

Adult Growth Rate:

NF

Population Growth Rate:

NF

Population Variablity:

NF

Habitat

Ecosystem:

SAV, Macroalgal beds

Habitat Type:

Epiphytic

Substrate:

Biogenic

Exposure:

Semi-exposed, Protected

Habitat Expansion:

NF

Habitat Details:

E. h was collected from Zostera and other sea-weeds. (Okuda 1929) Semi-exposed, Protected (M. Otani, pers. comm.)

Trophic Level:

Suspension feeder

Trophic Details:

RELATED: [Bryozoans] Suspension feeder...filter phytoplankton less than 0.045mm in size from the water column. (Hill 2001) [Bryozoa] Many phytoplankton species are cleary unsuitable as food for bryozoans. (Hayward & Ryland 1999) [Cheilostomata] Main food is diatom, protozoans and etc. and unappropriate sized particles are ejected (Mawatari 1976)

Forage Mode:

Generalist

Forage Details:

RELATED: [Bryozoans] Suspension feeder...filter phytoplankton less than 0.045mm in size from the water column. (Hill 2001) [Bryozoa] Many phytoplankton species are cleary unsuitable as food for bryozoans. (Hayward & Ryland 1999) [Cheilostomata] Main food is diatom, protozoans and etc. and unappropriate sized particles are ejected (Mawatari 1976)

Natural Control:

RELATED: PREDATION [Predation] [Bryozoa] Browsers and grazers, including sea urchins, fish, crabs and some prosobranchs, are known to include bryozoans in their diet. (Hayward & Ryland 1998) [Predation] [Bryozoa] Bryozoans are also the prey of very many small, selective predators, some of which may be adapted to a very narrow spectrum of prey species. Among them opisthobranch predators of bryozoans are well known. (Hayward & Ryland 1999) [Predation] [Bryozoa] Other than opisthobranchs as a predator, amphipods, isopods, mites and pycnogonids have all been recorded preying on bryozoan colonies. (Hayward & Ryland 1998) EPIBIONTS [Epibionts] [Cheilostomata] It is frequently observed in Japan that several species of hydroids flourish on Cheilostomata cause damages to them. (Mawatari 1976)

Associated Species:

NF

References and Notes

References:

Bock, P. (2016). Escharella Gray, 1848. Retrieved from http://www.bryozoa.net/cheilostomata/romancheinidae/escharella.html Global Invasive Species Database. http://www.iucngisd.org/gisd/ Access Date: 11-Mar-2016. Hayward PF & Ryland JS (1999) Cheilostomatous Bryozoa part 2. Hippothooidea - Celleporoidea. Synopses of the British Fauna (New Series). Barnes RSK & Crothers JH (eds.) No. 14 (Second Edition). The Linnean Society of London and The Estuarine and Coastal Sciences Association by Field Studies Council: 416pp. Hill, K. (2001) Smithsonian Marine Station at Fort Pierce. Retrieved from http://www.sms.si.edu/irlspec/Electr_bellul.htm Mawatari S (1976) Bryozoa (Ectoprocta). In: Animal systematics. Uchida T (ed.) Nakayama-shoten Co. Ltd., Tokyo: 35-229. (in Japanese) Ohtani K & Terao T (1973) Oceanographic structure of the Mutsu Bay. Bulletin of the Faculty of Fisheries Hokkaido University 24: 100-131. (in Japanese with English abstract) http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/23496/1/24(3)_P100-131.pdf Okada Y (1929) Report of the biological survey of Mutsu Bay. 12. Cheilostomatous Bryozoa of Mutsu Bay. Science Report of the Tohoku Imperial University, Ser. 4, 4: 11-35. Ostrovsky, A. N. (2013). Evolution of Sexual Reproduction in Marine Invertebrates – Example of gymnolaemate bryozoans. Dordrectht: Springer Netherlands. Doi: 10.1007/978-94-007-7146-8 Rouse, S. (2011). Aetea anguina. Bryozoa of the British Isles. Retrieved from http://britishbryozoans.myspecies.info/content/aetea-anguina-linnaeus-1758 Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). Invertebrate Zoology: A functional evolutionary approach. Ann Arbor, MN: Thomson Brooks/Cole. Temkin, M. H. (1991). Fertilization in the Gymnolaemate Bryozoa (Doctoral dissertation). Retrieved from ProQuest Dissertations and Theses database. (DP23819). Tilbrook KJ (2012) Cheilostomata: first records of two invasive species in Australia and the northerly range extension for a third. Check List 8: 181-183. http://www.checklist.org.br/getpdf?NGD192-11 Winston JE (1977). Distribution and ecology of estuarine ectoprocts: A critical review. Chesapeake Science, 18: 34‐57. doi:10.2307/1350363. https://fau.digital.flvc.org/islandora/object/fau%3A6214/datastream/OBJ/view/Distribution_and_ecology_of_estuarine_ectoprocts__A_critical_review.pdf Woollacott, R. M., & Zimmer, R. L. (Eds.). (1977). Biology of Bryozoans. New York, NY: Academic Press

Literature:

Little or no information; expert opinion based on general knowledge

Notes:

NA