Invasion History
First Galapagos Record: 1934General Invasion History:
Ectopleura crocea (also known as Pinauay crocea or Tubularia crocea) was first described from 'Boston Bay', Massachusetts by Louis Agassiz in 1862 (as Parypha crocea). On the Atlantic coast of North America, its presumed native region, E. crocea has been collected from the Miramichi Estuary, New Brunswick, south to Lake Worth, Florida and Port Aransas, Texas (Fraser 1944; Deevey 1950; Defenbaugh 1973; Ruiz et al. unpublished data). It has also been collected on the Caribbean shore of South America at Santa Marta, Colombia (Wedler 1975), where we consider it cryptogenic. Ectopleura crocea has a wide global distribution and was apparently introduced to non-native locations starting in or before the 19th century (Deevey 1950; Carlton 1979; Watson 1999).
Invasion History in the Galapagos:
Ectopleura crocea was collected in 1934 off Isla Marchesa (then known as Bindloe Island), but was described as a new endemic species, E. media. In later surveys, it was identified as Ectopleura media (Calderet al. 2003; Calder et al. 2019), but was recently genetically identified as E. crocea (Calder et al. 2021).
Invasion history elsewhere in the world:
Ectopleura crocea has been reported from the tropical Pacific at Jicaron Island, Panama (Fraser 1938), from fouling plates in Salinas, Ecuador (2018, Calder et al. 2021), and the southeastern Pacific at Valparaiso, Chile (1905, Deevey 1950). In the southwestern Pacific, it was first collected in Victoria, Australia, in Port Phillip Bay (as Tubularia ralphii, Bale 1884, cited by Watson 1999). It has also been collected in Sydney Harbor and Port Kembla, in New South Wales, at Fremantle, in Western Australia (Watson 1999), at Auckland, New Zealand (Cranfield et al. 1998). In the northeast Atlantic, E. crocea appears to be an introduction. It was first collected in the Azores in 1989 (Cardigos et al. 2006) and is also known from Madeira (Wirtz 2007). It was noted as a rare occurrence on ship hulls at Plymouth, England in 1895 and 1907 (Plymouth Marine Fauna, http://www.mba.ac.uk/pmf/) and at Ipswich, England in 1959 (Rees 1963). It is not listed as a Mediterranean invader by Galil (2009), but available references suggest that it is mostly known from harbors (e.g., Villefranche-sur-mer, France, 1895, Schuchert 2010; Bay of Naples, Italy, 1892, Bouillon et al. 2004; Israel 1946, Vervoort 1993). In the southwest Atlantic, it occurs from Uruguay to Bahia Blanca, Argentina (Genzano et al. 2005). It was first reported from this region in 1971 and is considered cryptogenic there (Orensanz et al. 2003). In South Africa, it was found in Durban and Cape Town in 1947 (Ewer 1953, cited by Millard 1975, as Tubularia warreni; Schuchert 2010; (1947, Millard 1952, cited by Mead et al. 2011). In the Northwest Pacific, Tubularia sagaminea and T. mesembryanthemum, reported from Japan (Stechow 1907; Yamada 1959; Hirohito 1988) and China (Hargitt 1927, Yamada 1959. all cited by Imazu et al. 2014), are all considered synonyms of E. crocea.
Description
Ectopleura crocea, also commonly known as Pinauay or Tubularia crocea, is a hydrozoan which lacks a medusa stage. Its colonies grow from branching stolons, in tangled masses up to 100–120 mm in height, and consist of up to several hundred unbranched stems, with one hydranth per stalk. The perisarc is wrinkled with a few annulations, but there are no joints in the stalk. The hydranth is vase-shaped with a long hypostome. The tentacles are threadlike, in two whorls of 20–24 each. The proximal-whorl tentacles are larger and longer than those in the distal whorl. The female gonophores are carried on 12–16 blastostyles, hanging below the tentacles. The female gonophores produce eggs, which develop into planktonic actinula larvae resembling miniature hydranths, usually with four tentacles. Production of these larvae may vary regionally; being rare (West Coast, Fraser 1937) or frequent (Chesapeake Bay, Calder 1971). The male gonophores are oval or spherical, without apical processes. The body of the hydranth is pink (description from: Fraser 1937; Calder 1971; Watson 1999; Schuchert 2010).
The correct genus name for this hydroid is disputed. Marques and Migotto (2000) published a cladistic analysis of the genus Ectopleura which supported the monophyly of the genus, but found that genus consisted of two subclades, and put several widespread species including E. larynx, E. crocea, and E. marina into a new genus, Pinauay. Schuchert (2010) considers the split to be unjustified. Imazu et al. (2014) review the taxonomy and distribution of this hydroid, using the name E. crocea. They tentatively support the synonymy of Western Atlantic E. crocea with E. ralphi, as described from Australia and based on Brazilian specimens, but suggest that worldwide morphological and genetic comparisons are needed.
Taxonomy
Taxonomic Tree
Kingdom: | Animalia | |
Phylum: | Cnidaria | |
Class: | Hydrozoa | |
Subclass: | Hydroidolina | |
Order: | Anthoathecatae | |
Suborder: | Filifera | |
Family: | Tubulariidae | |
Genus: | Ectopleura | |
Species: | crocea |
Synonyms
Paryphya crocea (L. Agassiz, 1862)
Pinauay crocea (Marques and Migotto, 2000)
Tubularia crocea (Allman, 1872)
Tubularia mesembryanthemum (Allman, 1871)
Tubularia polycarpa (Allman, 1872)
Tubularia ralphi (Bale, 1884)
Tubularia gracilis (von Lendenfeld, 1885)
Tubularia australis (Stechow, 1924)
Tubularia warreni (Ewer, 1953)
Tubularia sagamina (Stechow, 1907)
Ectopleura media (Fraser, 1938)
Potentially Misidentified Species
Native to the Galapgos, releases medusae (Calder et al. 2019)
Ectopleura marina
West Coast on open shores (Mills et al., in Carlton 2007)
Ecology
General:
The hydroid Ectopleura crocea lacks a free-living medusa. It does have a short-lived (~24 hours) planktonic lecithotrophic larval form, known as an actinula, resembling a small sea-anemone. It grows on a solid substrate, with polyps arising from branching, creeping stolons. The polyps grow as single stalks, each bearing a hydranth, whose tentacles capture zooplankton. The polyps produce bunches of gonophores, which produce either eggs or sperm. Colonies are diecious (single-sexed). Female gonophores produce multiple eggs, typically 2–4, which are brooded and fertilized by sperm in the water column. The egg develops in the gonophore through the planula stage into an actinula (Barnes 1983; Bouillon et al. 2004; Schuchert 2010). Larvae spend about 24 hours in the water column (as Ectopleura mesembryanthemum; Yamashita et al. 2003).
This hydroid occurs on a variety of substrates, including rocks, shells, concrete, pilings, buoys, jetties, pipes, and ships’ hulls (Fraser 1944; Woods Hole Oceanographic Institution 1952; Calder 1971; Gosner 1978). It is characteristic of harbors and polluted waters (Bouillon et al. 2004; Schuchert 2010). In South Carolina, it was found at a salinity range of 23–34 PSU (Calder 1976). The occurrences of Ectopleura crocea in Salinas, Ecuador, with mean water temperature of 24 °C, increases the known temperature tolerance of this hydroid (Calder et al. 2021).
Food:
Zooplankton, small epibenthos
Consumers:
Nudibranchs
Competitors:
Trophic Status:
Carnivore
CarnHabitats
General Habitat | Oyster Reef | None |
General Habitat | Coarse Woody Debris | None |
General Habitat | Marinas & Docks | None |
General Habitat | Rocky | None |
General Habitat | Vessel Hull | None |
Salinity Range | Polyhaline | 18-30 PSU |
Salinity Range | Euhaline | 30-40 PSU |
Tidal Range | Subtidal | None |
Vertical Habitat | Epibenthic | None |
Life History
Tolerances and Life History Parameters
Minimum Temperature (ºC) | 0 | Based on geographical range |
Maximum Temperature (ºC) | 30 | Charleston Harbor SC (Calder 1992) |
Minimum Salinity (‰) | 23 | Field distribution, SC (Calder1976) |
Maximum Salinity (‰) | 34 | Field distribution, SC (Calder1976) |
Maximum Duration | 1 | Yamashita et al. 2003, for Ectopleura mesembryanthemum |
Broad Temperature Range | None | Cold temperate-Tropical |
Broad Salinity Range | None | Polyhaline-Euhaline |
General Impacts
Ectopleura crocea is frequently an abundant fouling organism in its native and introduced ranges. It seems to prefer man-made structures and is tolerant of polluted waters (Schuchert 2010). It is also occurs on mussel shells and around mussel beds, and is a potential competitor with mussels and a possible predator on their larvae (Okamura 1986; Fitridge 2011).
Economic impacts
Ectopleura crocea has been reported from pilings, buoys, jetties, pipes, and ship hulls (Fraser 1944; Woods Hole Oceanographic Institution 1952; Calder 1971; Gosner 1978). It is probably an important contributor to fouling communities because of its size and frequent abundance. However, specific impacts on shipping have not been reported.
Fisheries- Ectopleura crocea fouls cultured mussels (Mytilus galloprovincialis) in Port Phillip Bay, Australia, with adverse effects on their growth and condition, possibly due to competition for food, and on the recruitment of larvae due to predation (Fitridge 2011).
Ecological Impacts
Competition-Ectopleura crocea was a dominant form on fouling plates in San Francisco Bay (Okamura 1986).
Habitat Change- The degenerating stalks of Ectopleura crocea provided a filamentous surface for metamorphosing larvae of Mytilus spp. on fouling plates in San Francisco Bay (Okamura 1986), and in Port Phillip Bay, Australia (Fitridge 2011).
Impacts in the Galapagos Islands
Impacts are unknown in the Galapagos Islands.
Regional Distribution Map
Bioregion | Region Name | Year | Invasion Status | Population Status |
---|---|---|---|---|
SEP-Z | 1934 | Non-native | Established |
Occurrence Map
OCC_ID | Author | Year | Date | Locality | Status | Latitude | Longitude |
---|
References
Barnes, Robert D. (1983) Invertebrate Zoology, Saunders, Philadelphia. Pp. 883Berman, Jody; Carlton, James T. (1991) Marine invasion processes: Interactions between native and introduced marsh snails, Journal of Experimental Marine Biology and Ecology 150(2): 267-281
Bouillon, Jean; Medel, Maria Dolores; Pagès, Francesc; Gili, Josep-Maria; Boero, Ferdinando ; Gravili, Cinzia (2004) Fauna of the Mediterranean Hydrozoa., Scientia Marina 68(suppl. 2): 5-438
Calder, D. R.; Mallinson, J. J.; Collins, K.; Hickman, C. P. (2003) Additions to the hydroids (cnidaria) of the Galapagos, with a list of species reported from the islands, Journal of Natural History 37: 1173-1218
Calder, Dale R. (1971) Hydroids and hydromedusae of southern Chesapeake Bay., Virginia Institute of Marine Science, Special Papers in Marine Science 1: 1-125
Calder, Dale R. (1976) The zonation of hydroids along salinity gradients in South Carolina estuaries, In: (Eds.) Coelenterate Ecology and Behavior. , New York. Pp. 165-174
Calder, Dale R. (1992) Seasonal cycles of activity and inactivity in some hydroids from Virginia and South Carolina, U.S.A., Canadian Journal of Zoology 68: 442-450
Calder, Dale R. and 8 authors (2021) Additions to the hydroids (Cnidaria, Hydrozoa) of marine fouling communities on the mainland of Ecuador and in the Galapagos Islands, Aquatic Invasions 16: 208-252
California Department of Fish and Wildlife (2014) Introduced Aquatic Species in California Bays and Harbors, 2011 Survey, California Department of Fish and Wildlife, Sacramento CA. Pp. 1-36
Cardigos, F. and 5 authors (2006) Non-indigenous marine species of the Azores., Helgoland Journal of Marine Research 60: 160-169
Carlton, James T. (1979) History, biogeography, and ecology of the introduced marine and estuarine invertebrates of the Pacific Coast of North America., Ph.D. dissertation, University of California, Davis. Pp. 1-904
Carlton, James T. (1989) <missing title>, <missing publisher>, <missing place>. Pp. <missing location>
Carlton, James T. (Ed.) (2007) The Light and Smith Manual: Intertidal Invertebrates from Central California to Oregon Fourth Edition, Completely Revised and Expanded, University of California Press, Berkeley. Pp. <missing location>
Carlton, James T.; Keith, Inti; Ruiz, Gregory M. (2019) Assessing marine bioinvasions in the Galápagos Islands: implications for conservation biology and marine protected areas, Aquatic Invasions 14(1): 1-20
Chainho, Paula and 20 additional authors (2015) Non-indigenous species in Portuguese coastal areas, lagoons, estuaries, and islands, Estuarine, Coastal and Shelf Science <missing volume>: <missing location>
Çinar, Melih Ertan; Yoke, Mehmet Baki; Açik, Sermin; Bakir, Ahmet Kerem (2014) Check-list of Cnidaria and Ctenophora from the coasts of Turkey, Turkish Journal of Zoology 38: Published online
Cohen, Andrew N. and 10 authors (2005) <missing title>, San Francisco Estuary Institute, Oakland CA. Pp. <missing location>
Cohen, Andrew N.; Carlton, James T. (1995) Nonindigenous aquatic species in a United States estuary: a case study of the biological invasions of the San Francisco Bay and Delta, U.S. Fish and Wildlife Service and National Sea Grant College Program (Connecticut Sea Grant), Washington DC, Silver Spring MD.. Pp. <missing location>
Cohen, Andrew; and 16 authors. (1998) <missing title>, Washington State Department of Natural Resources, Olympia, Washington. Pp. 1-37
Cornelio, Michele; Manzoni, Alberto (1999) Caratterizzazione stagionale degli insediamenti di organismi macrobentonici su substrati sperimentali nel bacino centrale della laguna di Venezia., Bollettino del Museo Civico di Storia Naturale di Venezia 49: 135-144
Crane, Laura C.; Goldstein, Jason S.; Thomas, Devin W.; Rexroth, Kayla S.; Watts, Alison W. (2021) Effects of life stage on eDNA detection of the invasive European green crab (Carcinus maenas) in estuarine systems, Ecological Indicators 124(107412): Published online
Cranfield, H.J.; Gordon, D.P.; Willan, R.C.; Marshall, B.A; Battershill, C.N.; Francis, M.P.; Nelson, W.A.; Glasby, C.J.; Read, G.B. (1998) <missing title>, The National Institute of Water and Atmospheric Research, New Zealand. Pp. <missing location>
de Rivera, Catherine, and 27 authors (2005) Broad-scale non-indigenous species monitoring along the West Coast in National Marine Sanctuaries and National Estuarine Research Reserves report to National Fish and Wildlife Foundation, National Fish and Wildlife Foundation, Washington, D.C.. Pp. <missing location>
Dean, T.A.; Hurd, L. E. (1980) Development in an estuarine fouling community: the influence of early colonists on later arrivals, Oecologia (Berl) 46: 295-301
Deevey, Edward S. (1950) Hydroids from Louisiana and Texas, with remarks on the Pleistocene biogeography of the western Gulf of Mexico, Ecology 31: 334-367
Defenbaugh, Richard E. (1973) <missing title>, Dept. for Marine Resources Information, Center for Marine Resources, Texas A & M University, College Station, Tex.. Pp. <missing location>
Faasse, Marco (2012) The exotic isopod Synidotea in the Netherlands and Europe, A Japanese or American invasion (Pancrustacea: Isopoda)?, Nederlandse Faunistiche Mededelingen 108: 103-106
Fauchauld, Kristian (1977) Polychaetes from Intertidal Areas in Panama, with a Review of Previous Shallow-Water Records, Smithsonian Contributions to Zoology 221: 1-81
Fisheries and Oceans Canada 2018b Haplosporidium costale (SSO) of Oysters. https://www.dfo-mpo.gc.ca/science/aah-saa/diseases-maladies/hcoy-eng.html
Fitridge, Isla (2011) <missing title>, University of Melbourne, <missing place>. Pp. <missing location>
Fitridge, Isla; Keough, Michael J. (2013) Ruinous resident: the hydroid Ectopleura crocea negatively affects suspended culture of the mussel Mytilus galloprovincialis, Biofouling 29(2): 119-131
Fraser, C. McLean (1937) <missing title>, The University of Toronto Press, Toronto,. Pp. <missing location>
Fraser, C. McLean (1938) Hydroids of the 1934 Allan Hancock Pacific expediton., Allan Hancock Pacific Expeditions 4(1): 1-106
Fraser, C. McLean (1944) Hydroids of the Atlantic Coast of North America, In: (Eds.) . , Toronto. Pp. 1-441
Fraser, C. McLean (1948) Hydroids of the Alan Hancock Pacific expeditions since 1938, Allan Hancock Pacific Expeditions 4-5: 179-343
Galil, B. S. (2009) Taking stock: inventory of alien species in the Mediterranean sea., Biological Invasions 11: 359-372
Genzano, Gabriel N.; Giberto, Diego; Schejter, Laura; Bremec, Claudia; Meretta, Pablo (2009) Hydroid assemblages from the Southwestern Atlantic Ocean (34-42 S), Marine Ecology 30: 33-46
Gosner, Kenneth L. (1978) A field guide to the Atlantic seashore., In: (Eds.) . , Boston. Pp. <missing location>
Hewitt, C.L.; Campbell, M.L.; Thresher, R.E.; Martin, R.B. (1999) Marine Biological Invasions of Port Phillip Bay, Victoria, In: (Eds.) . , Hobart, Tasmania. Pp. <missing location>
Hidu, Herbert (1978) Setting of estuarine invertebrates in Delaware Bay, New Jersey, related to intertidal-subtidal gradients, Internationale Revue der Gesamten Hydrobiologie 53(5): 637-661
Huang, Xuguang, Bingyu;; Guo, Donghu; Zhong;, Yanping; Li, Shunxing; Liu, Xin;; Laws, Edward A.; Huang, Bangqin (2021) Blackfordia virginica blooms shift the trophic structure to smaller size plankton in subtropical shallow waters, Marine Pollution Bulletin 182(111990): Published online
Huisman, John M.; Jones, Diana S.; Wells, Fred E.; Burton, Timothy S. (2008) Introduced marine biota in Western Australian waters., Records of the Western Australian Museum 25: 1-44
Imazu, Maurício Antunes; Ale, Ezequiel; Genzano, Gabriel Nestor; Marques, Antonio Carlos (2014) A comparative study of populations of Ectopleura crocea and Ectopleura ralphi (Hydrozoa, Tubulariidae) from the Southwestern Atlantic Ocean, Zootaxa 3753(5): 421-439
Kim, Daemin; Taylor, Andrew T.; Near, Thomas J. (2022) Phylogenomics and species delimitation of the economically important Black Basses (Micropterus), Scientific Reports 12(9113): Published online
https://doi.org/10.1038/s41598-022-11743-2
Lemire, Maryse; Bourget, Edwin (1996) Substratum heterogeneity and complexity influence micro-habitat selection of Balanus sp. and Tubularia crocea larvae, Marine Ecology Progress Series 135: 77-87
Looby, Audrey; Ginsburg, David W. (2021) Nearshore species biodiversity of a marine protected area off Santa Catalina Island, California, Western North American Naturalist 81(1): 113-130
Marques, A. C.; Migotto, A. E. (2000) [Cladistic analysis and new classification of the family Tubulariidae (Hydrozoa, Anthomedusae)], Papéis avulsos de zoologia (Brasil) 41(25): 465-488
Mead, A.; Carlton, J. T.; Griffiths, C. L. Rius, M. (2011b) Introduced and cryptogenic marine and estuarine species of South Africa, Journal of Natural History 39-40: 2463-2524
Millard, N. A. H. (1959) Hydrozoa from ships' hulls and experimental plates in Cape Town docks., Annals of the South African Museum 45: 239-255
Millard, N. A. H. (1975) Monograph on the Hydroida of southern Africa, Annals of the South African Museum 68: 1-513
Mills, Claudia; Marques, Antonio; Migotto, Alvaro E; Calder, Dale R.; Hand, Cadet (2007) The Light and Smith Manual: Intertidal invertebrates from Central California to Oregon (4th edition), University of California Press, Berkeley CA. Pp. 118-168
Needles, Lisa A.; Wendt, Dean E. (2013) Big changes to a small bay: Introduced species and long-term compositional shifts to the fouling community of Morro Bay (CA), Biological Invasions 15(6): 1231-1251
Nelson, Matthew L. (2009) <missing title>, Humboldt State University, Eureka, California. Pp. <missing location>
NIMPIS (National Introduced Marine Pest Information System). 1998-2015 NIMPIS (National Introduced Marine Pest Information System). <missing URL>
Occhipinti Ambrogi, Anna (2000) Biotic invasions in a Mediterranean lagoon., Biological Invasions 2: 165-176
Okamura, Beth (1986) Formation and disruption of aggregations of Mytilus edulis in the fouling community of San Francisco Bay, California, Marine Ecology Progress Series 30: 275-282
Orensanz, Jose Maria and 14 other authors (2002) No longer the pristine confines of the world ocean: a survey of exotic marine species in the southwestern Atlantic, Biological Invasions 4(1-2): 115-143
Pearse, A. S. (1936) Estuarine animals at Beaufort, North Carolina, Journal of the Elisha Mitchell Scientific Society 52(2): 174-224
Pestana, Lueji Barros; Dias, Gustavo Muniz; Marquesa, Antonio Carlos (2017) A century of introductions by coastal sessile marine invertebrates in Angola, South East Atlantic Ocean, Marine Pollution Bulletin 125: 426-a432
Prezant, Robert S.; Toll, Ronald B.; Rollins, Harold B.; Chapman, Eric J. (2002) Marine macroinvertebrate diversity of St. Catherines Island, Georgia., American Museum Novitates 3367: 1-31
Rees, W. J. (1963) Tubularia crocea L. Agassiz in British waters, Nature 197: 1223
Ruiz, Gregory M. and 6 authors (2006) <missing title>, Prince William Sound Regional Citizens’ Advisory Council & U.S. Fish & Wildlife Service, Edgewater MD. Pp. <missing location>
Ruiz, Gregory M.; Geller, Jonathan (2018) Spatial and temporal analysis of marine invasions in California, Part II: Humboldt Bay, Marina del Re, Port Hueneme, and San Francisco Bay, Smithsonian Environmental Research Center & Moss Landing Laboratories, Edgewater MD, Moss Landing CA. Pp. <missing location>
Schuchert, Peter (1996) The marine fauna of New Zealand: Athecate hydroids oand their medusae (Cnidara: Hydrozoa), New Zealand Oceanographic Institute Memoir 106: 1-159
Schuchert, Peter (2010) The European athecate hydroids and their medusae (Hydrozoa, Cnidaria): Capitata Part 2, Revue Suisse de Zoologie 117(3): 337-555
Schwindt, Evangelina and 15 authors (2014) Marine fouling invasions in ports of Patagonia (Argentina) with implications for legislation and monitoring programs, Marine Environmental Research 99: 60-68
Torrey, Harry Beal (1902) The Hydroida of the Pacific Coast of North America, University of California Publications, Zoology 1(1): 1-104
U.S. National Museum of Natural History 2002-2021 Invertebrate Zoology Collections Database. http://collections.nmnh.si.edu/search/iz/
Vervoort, W. (1993) Report on hydroids (Hydrozoa, Cnidaria) in the collection of the Zoological Museum, University of Tel-Aviv, Israel, Zoologische Mededelingen 67(40): 537-565
Wasson, Kerstin; Zabin, C. J.; Bedinger, L.; Diaz, M. C.; Pearse J. S. (2001) Biological invasions of estuaries without international shipping: the importance of intraregional transport, Biological Conservation 102: 143-153
Watson, J. E. (1999) Review of hydroids introduced to Victorian waters., In: Hewitt, C.; Campbell, M.;Thresher, R. Martin, R.(Eds.) Marine Biological Invasions of Port Phillip Bay, Victoria. , Hobart, Tasmania. Pp. 88-107.
Wedler, E. (1975) [Ecological studies of hydroids of the rocky shores of Santa Marta (Columbia)], Hegoland Marine Research 27: 324-363
Wirtz, Peter (2007) On a collection of hydroids (Cnidaria, Hydrozoa) from the Madeira archipelago., Arquipelago. Life and Marine Sciences 24: 11-16.
Woods Hole Oceanographic Institution, United States Navy Dept. Bureau of Ships (1952) Marine fouling and its prevention., United States Naval Institute., Washington, D.C.. Pp. 165-206
Yamashita, Keiji; Kawaii, Satoru; Nakai, Mitsuyo; Fusetani, Nobuhiro (2003) Larval behavioral, morphological changes, and nematocyte dynamics during settlement of actinulae of Tubularia mesembryanthemum Allman 1871 (Hydrozoa: Tubulariidae), Biological Bulletin 204: 256-269